69.8k views
3 votes
Use the given value and the trigonometric identities to find the exact value of each indicated trigonometric function

Use the given value and the trigonometric identities to find the exact value of each-example-1
User Tshao
by
4.9k points

1 Answer

4 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given values


\begin{gathered} \sin 30^(\circ)=(1)/(2) \\ \tan 30^(\circ)=\frac{\sqrt[]{3}}{3} \end{gathered}

STEP 2: Get the value of cosec 30 degrees


\begin{gathered} \text{csc }\theta\text{ means cosec }\theta\text{ and it is the inverse of sin }\theta \\ \csc \theta=(1)/(\sin \theta) \\ \sin 30=(1)/(2) \\ \csc 30=(1)/(\sin 30) \\ By\text{ substituting 1/2 for sin 30} \\ \csc 30=(1)/((1)/(2))=1*2=2 \end{gathered}

Therefore, the value of csc 30 is 2

STEP 3: Get the value of cot 60


\begin{gathered} \cot \theta=(1)/(\tan \theta) \\ \tan 60=\sqrt[]{3} \\ \cot 60=\frac{1}{\sqrt[]{3}} \\ By\text{ rationalization,} \\ \frac{1}{\sqrt[]{3}}*\frac{\sqrt[]{3}}{\sqrt[]{3}}=\frac{\sqrt[]{3}}{3} \end{gathered}

Hence, the value of cot 60 is √3/3

STEP 4: Get the value of cos 30


\begin{gathered} (\sin\theta)/(\tan\theta)=\cos \theta \\ \cos 30=(\sin 30)/(\tan 30) \\ By\text{ substitution,} \\ \cos 30=(1)/(2)/\frac{\sqrt[]{3}}{3} \\ \Rightarrow(1)/(2)*\frac{3}{\sqrt[]{3}}=\frac{3}{2\sqrt[]{3}} \\ By\text{ rationalization,} \\ \cos 30=\frac{3}{2\sqrt[]{3}}*\frac{2\sqrt[]{3}}{2\sqrt[]{3}}=\frac{3*2\sqrt[]{3}}{2*2*3}=\frac{6\sqrt[]{3}}{12}=\frac{\sqrt[]{3}}{2} \end{gathered}

Hence, the value of cos 30 is √3/2

STEP 5: Get the value of cot 30


\begin{gathered} \cot \theta=(1)/(\tan \theta) \\ \cot 30=(1)/(\tan 30) \\ By\text{ substitution,} \\ \cot 30=\frac{1}{\frac{\sqrt[]{3}}{3}} \\ \cot 30=1/\frac{\sqrt[]{3}}{3}=1*\frac{3}{\sqrt[]{3}}=\frac{3}{\sqrt[]{3}} \\ By\text{ rationalization,} \\ \frac{3}{\sqrt[]{3}}=\frac{3}{\sqrt[]{3}}*\frac{\sqrt[]{3}}{\sqrt[]{3}}=\frac{3\sqrt[]{3}}{3}=\sqrt[]{3} \end{gathered}

Hence, the value of cot 30 is √3

User Mostafa Soufi
by
4.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.