215k views
0 votes
et «be any integer. Round to me to three dec mal places we appropriate. If there is no solucion, erter solve the equalion by factor ng. Enter your answers as a comma - separates list. NO SOLUTION. )

et «be any integer. Round to me to three dec mal places we appropriate. If there is-example-1
User Arelius
by
4.3k points

1 Answer

3 votes

Problem

Solution

For this case we can do the following:


(1)/(\cos\theta)\cdot(\sin\theta)/(\cos\theta)-\cos \theta\cdot(\cos\theta)/(\sin\theta)=\sin \theta
(\sin\theta)/(cos^2\theta)-(\cos^2\theta)/(\sin\theta)=\sin \theta
(\sin^2\theta-\cos^2\theta\cos^2\theta)/(\sin\theta\cos^2\theta)=\sin \theta

then we can croos multiply:


\sin ^2\theta-\cos ^2\theta\cos ^2\theta=\sin ^2\theta\cos ^2\theta

then we can redistribute the terms and we got:


\sin ^2\theta=\cos ^2\theta\cos ^2\theta+\sin ^2\theta\cos ^2\theta

taking common factor cos^2 we got:


\sin ^2\theta=\cos ^2\theta(\cos ^2\theta+\sin ^2\theta)

Since:


\sin ^2\theta+\cos ^2\theta=1

We have:


\sin ^2\theta=\cos ^2\theta

And thae answer for this case is:


\theta=(\pi)/(4)+\pi\text{ n}

et «be any integer. Round to me to three dec mal places we appropriate. If there is-example-1
User Zdan
by
4.5k points