Let l be the length of the rectangle and w be its width.
Since the length is 7 feet less than 5 times the width, and the perimeter is 94 feet we can set the following system of equations:
![\begin{gathered} l=5w-7ft, \\ 2l+2w=94ft\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1g6b4g0hv338t9fc0j7krqegugbnioth8c.png)
Substituting the first equation in the second one we get:
![2(5w-7ft)+2w=94ft\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/ruvxc9mctzvqya1mun1f0fpur6baxmkueg.png)
Applying the distributive property we get:
![10w-14ft+2w=94ft\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/nr2bu32r36r2fpuy3bp3vqn25yvzqtf361.png)
Adding like terms we get:
![12w-14ft=94ft\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/xrpv984ki16krbhwfq0jgm8y72sm6y81cp.png)
Adding 14ft to the above equation we get:
![\begin{gathered} 12w-14ft+14ft=94ft+14ft, \\ 12w=108ft\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dheyat3e9o431xrxst3albj4d8qvzh5h2p.png)
Dividing the above equation by 12 we get:
![\begin{gathered} (12w)/(12)=(108ft)/(12), \\ w=9ft\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tjuog1d19vojocf4rb4yr3m402yhuowe0g.png)
Finally, substituting w=9ft in the first equation we get:
![\begin{gathered} l=5\cdot9ft-7ft=45ft-7ft \\ =38ft\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ppsfo6eyv6rx340yaltm6fo4rdm36iu9l9.png)
Answer: The length of the rectangle is 38ft and its width is 9ft.