Answer:
3)
![y=\frac35x+\frac25](https://img.qammunity.org/2023/formulas/mathematics/college/1woj9wrkvn71m3ng5rlsn0cpv2pu51pi9k.png)
4) a)
![y=-2x+7](https://img.qammunity.org/2023/formulas/mathematics/college/gh53zjhomy2ecrmkck728hdxyaxrokx7ia.png)
b)
![y=\frac12x+\frac92](https://img.qammunity.org/2023/formulas/mathematics/college/dn485ut5mgnsc961nl18qjakl64h97gutp.png)
Explanation:
Exercise 3
![-3x + 5y = 2](https://img.qammunity.org/2023/formulas/mathematics/college/pk2bdgcslok6hdzb6n6uzswuhy8e6cyghp.png)
![\implies 5y = 3x + 2](https://img.qammunity.org/2023/formulas/mathematics/college/vcpo0lr8i85bpu1n0s1tr8zap0qcvc2qr4.png)
![\implies y=\frac35x+\frac25](https://img.qammunity.org/2023/formulas/mathematics/college/wdkv0q0q3r2zz6197f697dijmrb43v3myw.png)
Exercise 4
a) If L2 is parallel to L1, it has the same slope (gradient) ⇒
![m = -2](https://img.qammunity.org/2023/formulas/mathematics/college/n0p6til3soi6v2z6bo7obihrqi0eo1fjz3.png)
If L2 passes through point (3, 1):
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
![\implies y-1=-2(x-3)](https://img.qammunity.org/2023/formulas/mathematics/college/o6wx2z12aqkb9eln2r2y8uv92e044yesfv.png)
![\implies y=-2x+7](https://img.qammunity.org/2023/formulas/mathematics/college/jpemxbl2913ov5sue90irhf0tml9ymshlr.png)
So L2 = L1
b) If L3 is perpendicular to L1, then the slope of L3 is the negative reciprocals of the slope of L1 ⇒
![m = \frac12](https://img.qammunity.org/2023/formulas/mathematics/college/vw0vfkcdqfjf66380co5cr6epe9n82m1kw.png)
If L3 passes through point (-5, 2):
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
![\implies y-2=\frac12(x+5)](https://img.qammunity.org/2023/formulas/mathematics/college/ik9ma2ij44gx58p8dvz1tj9dehggp4tnm4.png)
![\implies y=\frac12x+\frac92](https://img.qammunity.org/2023/formulas/mathematics/college/zfbjprl4yc4lda92r3mcxmips7gdz31yam.png)