Given the exponential function:
![f(x)=2^x+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/53qkmq61ara4rfvysv3ax16yji5yly097u.png)
Let's find a list of ordered pairs which represent points on tyhe graph of this given function.
Let's evaluate f(x) for different values of x.
![\begin{gathered} when_{\text{ }}x=1\Longrightarrow f(1)=2^1+1=2+1=3 \\ \\ when_{\text{ }}x=2\Longrightarrow f(2)=2^2+1=4+1=5 \\ \\ when_{\text{ }}x=3\Longrightarrow f(3)=2^3+1=8+1=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rt2jitlulwpxn3r6jkjadlzzi8wwe3448d.png)
Thus, we have the soluttions:
When x = 1, f(x) = 3
When x = 2, f(x) = 5
When x = 3, f(x) = 9
Therefore, a possible list of ordered pairs for the function are:
(x, y) ==> (1, 3), (2, 5), (3, 9)
ANSWER:
• (1, 3)
,
• (2, 5)
,
• (3, 9)