213k views
2 votes
If M1 and M2 are the number of sexsimal and centesimal minute of any angle, prove that M1/27=M2/50Exercise 15(b)

If M1 and M2 are the number of sexsimal and centesimal minute of any angle, prove-example-1
User Gangabass
by
4.9k points

1 Answer

1 vote

Given the numbers of sexagesimal and centesimal minutes of any angle, you need to prove that:


(M_1)/(27)=(M_2)/(50)

By definition, a Right Angle measures 90 degrees.

By definition, for Sexagesimal:


1\text{\degree}=60\text{ }minutes
1\text{ }minute=60\text{ }seconds

Then, in the sexagesimal form, a Right Angle is:


90\cdot60\cdot60\text{ }seconds

By definition, for Centesimal:


90\text{\degree}=100\text{ }g
100\text{ }g=100\text{ }minutes
1\text{ }minute=100\text{ }seconds

Therefore, a Right Angle is:


100\cdot100\cdot100\text{ }seconds

So you can set up this ratio:


(M_1)/(M_2)=(90\cdot60)/(100\cdot100)

Simplifying, you get:


(M_1)/(M_2)=(27)/(50)

Hence, the answer is:


(M_1)/(M_2)=(90\cdot60)/(100\cdot100)
(M_1)/(M_2)=(27)/(50)

Therefore:


(M_1)/(27)=(M_2)/(50)
User Edilberto
by
4.7k points