Answer: We have to find the sound Intensity of sound B in Decibels, provided the sound Intensity of sound A is 20 Decibels. The Sound Intensity of B is 3 times the sound Intensity of sound A:
![\begin{gathered} A=20db=10\log _(10)((I_A)/(I_o))\rightarrow(1) \\ B=3A=60db=10\log _(10)((I_B)/(I_o))\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mdjqv26bt56jjfhc8om7q8gpfbvmprxfbv.png)
The threshold Intensity in equations (1) and (2) is as follows:
![I_o=10^(-12)watts\/m^2](https://img.qammunity.org/2023/formulas/mathematics/college/v661curgqzw9jag22l7ghlp22yp54mei6p.png)
Solving the equation (1) gives:
![\begin{gathered} 10^(20)=(I_A)/(I_o)=(I_A)/(10^(-12)watts\/m^2) \\ I_A=10^(20)\cdot10^(-12)watts\/m^2 \\ I_A=10^8watts\/m^2\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qv4bw66tkx3r4hydkja3l8uzry4wnxd64g.png)
Same is true for the equation (2):
![\begin{gathered} 60db=10\log _(10)((I_B)/(I_o)) \\ 10^(60)=(I_B)/(I_o)=(I_B)/(10^(-12)watts\/m^2) \\ I_B=10^(60)\cdot10^(-12)watts\/m^2 \\ I_B=10^(48)watts\/m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nwnhq05zi681tkfwiyizqw03jxvzv9aahl.png)
The answer, therefore, is as follows:
![\begin{gathered} I_A=10^8watts\/m^2=20db \\ I_B=10^(48)watts\/m^2=60db \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/15lza51yrqg6zsvqh94dwnmltjgpav4yhg.png)