Given:
The function are,
![g(x)=6x^2-5](https://img.qammunity.org/2023/formulas/mathematics/college/6ssg7byjvkz1tzfak2n722yo0vaa8v21ey.png)
and
![f(x)=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ggqp4tf9ahbsgqhvjmgpjcoq74fanvke01.png)
Step-by-step explanation:
The function g(x) i a quadratic function and quadratic function is defined for all values of x. So domain of function f(x) is all real numbers.
The x-coordinate vertex of parabola ax^2 + bx + c = 0 is,
![-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/3hp8tekcn8mlds5pay3wg5yokcdemsshs8.png)
Fo the given quadratic equation a = 6, b = 0 and c = -5. So x-coordinate of vertex is,
![-(0)/(2\cdot6)=0](https://img.qammunity.org/2023/formulas/mathematics/college/bpfjjwp3pau3n51c9ryzo5v9mx6t167gz7.png)
Determine the y-coordinate of vertex.
![\begin{gathered} g(0)=6\cdot(0)^2-5 \\ =-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p76l9kb8a30t26tlr3ctxza6raxwyvk2oa.png)
So minimum value of function is -5.
So range of function g(x) is,
![\lbrack-5,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/soinaol5uzwbz17jpk3hew2wl88kwseozm.png)
Domain and range in interval notation:
Domain:
![(-\infty,\infty)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gt1s3h5yhehl0wy6ityf0e52fgigjd4in4.png)
Range:
![\lbrack-5,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/soinaol5uzwbz17jpk3hew2wl88kwseozm.png)
Domain and range in set notation:
Domain:
![\mleft\lbrace x|x\in\mathfrak{\Re }\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/yjvp57vbqw4g9112wb09y0rb4g8939wry8.png)
Range:
![\mleft\lbrace y|y\ge-5\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/4xc9ja1aty864mwevvnboo5a1pwu8wfm9g.png)
Domain and range in inequality notation:
Domain:
![-\inftyRange:[tex]-5\leq y<\infty](https://img.qammunity.org/2023/formulas/mathematics/college/gyx9vng522qy4potkkpblkrkarm77esww7.png)
On compare the function g(x) with f(x), it can be observed that value of factor a is 6, which means function stretch vertically by a factor of 6.
The value of k is -5, means function translated down by 5 units.
Answer:
When compared to f(x), g(x) is stretched verticaly by a factor of 6, and translated down 5 units.