Given:
![f(x)=3\sqrt[]{2x+4}](https://img.qammunity.org/2023/formulas/mathematics/college/7pbel75u2ig1vctx8rr04r1hbs5tib72a6.png)
The objective is to find inverse of the function.
Consider the given function as,
![y=3\sqrt[]{2x+4}](https://img.qammunity.org/2023/formulas/mathematics/college/tmkib5g3o2et00b24pq5neosadhtddmpni.png)
The inverse of the function can be calculated by replacing the varibales x and y of the function.
Then, the function will be,
![x=3\sqrt[]{2y+4}](https://img.qammunity.org/2023/formulas/mathematics/college/orn8naxjd2m1v9p7mnhxalrcfpbt20s1zv.png)
Now, solve for y.
![\begin{gathered} (x)/(3)=\sqrt[]{2y+4} \\ 2y+4=((x)/(3))^2 \\ 2y+4=(x^2)/(3^2)^{} \\ 2y=(x^2)/(9)^{}-4 \\ y=(1)/(2)((x^2)/(9)^{}-4) \\ y=(x^2)/(18)^{}-(4)/(2) \\ y=(x^2)/(18)^{}-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9nt1ovm5fsbifq9vd7owltgd195ldqzc6h.png)
Thus, the inverse function is,

Hence, the required inverse of the function is obtained.