73.9k views
1 vote
The perimeter of rectangles MATH is 152 cm. Theratio of the length to width is 5:14. What is the widthof the rectangle? What is the area of the rectangle?

User Newlog
by
5.2k points

1 Answer

3 votes

Solution:

Given:


\begin{gathered} \text{The ratio of length to width of a rectangle=5:14} \\ \text{Perimeter}=152\operatorname{cm} \end{gathered}

Thus,


\begin{gathered} l\colon w=5\colon14 \\ (l)/(w)=(5)/(14) \\ \text{Cross multiplying,} \\ w*5=l*14 \\ 5w=14l \\ \text{Dividing both sides by 14 to make l subject of the formula,} \\ (5w)/(14)=l \\ l=(5w)/(14) \end{gathered}

Also, recall that the perimeter of a rectangle is given by;


P=2(l+w)

Hence,


\begin{gathered} P=2(l+w) \\ 152=2((5w)/(14)+w) \\ (152)/(2)=(5w)/(14)+(w)/(1) \\ 76=(5w+14w)/(14) \\ 76=(19w)/(14) \\ \text{Cross multiplying,} \\ 76*14=19w \\ 1064=19w \\ \text{Dividing both sides by 19 to get the value of w,} \\ (1064)/(19)=w \\ w=56\operatorname{cm} \\ \\ \\ \text{Substituting the value of w gotten into;} \\ 5w=14l \\ 5*56=14l \\ 280=14l \\ \text{Dividing both sides by 14 to get the value of }l \\ (280)/(14)=l \\ l=20\operatorname{cm} \end{gathered}

Therefore, the length of the rectangle is 20cm.

The width of the rectangle is 56cm.

To get the area of the rectangle,


\begin{gathered} \text{Area}=\text{length x width} \\ A=l* w \\ A=20*56 \\ A=1120\operatorname{cm} \end{gathered}

Therefore, the area of the rectangle is 1120 square centimeters.

User Thomas Kammeyer
by
5.9k points