Given:
The focus of parabola is (-3,11/2).
The equation of directrix is y = -3/2.
Step-by-step explanation:
The general equation of parabola,
![y-k=(1)/(4p)(x-h)^2](https://img.qammunity.org/2023/formulas/mathematics/college/62rcls4mk9xyo22sgb7zuijwahw18p6mem.png)
Then coordinates of focus is (h,k+p) and directrix equation is y = k - p.
On comparison with given focus and directrix equation,
![h=-3](https://img.qammunity.org/2023/formulas/mathematics/college/7jzhq1eun3hlv8hfkgeepgvu1mz3agcb4m.png)
![k+p=(11)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/6un6tp5u9sadti5qtt0lebxnp5x3qmza9m.png)
![k-p=-(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/56yri1u4262dfxsce7p2nyuvjqj03h4pv7.png)
Add equation k + p = 11/2 and k - p = -3/2 to obtain the value of k.
![\begin{gathered} k+p+k-p=(11)/(2)-(3)/(2) \\ 2k=4 \\ k=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ur5zrlvt18sb4mq3fxa2cyi0zb9btzua9e.png)
Determine the value of p.
![\begin{gathered} 2-p=-(3)/(2) \\ p=2+(3)/(2) \\ =(7)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fuyxb6uj6chc93wr64mh4ul0y6diijn2zg.png)
So value of h is -3, k is 2 and p is 7/2.
Determine the parabola equation for these h, p and k values.
![\begin{gathered} y-2=(1)/(4\cdot(7)/(2))(x-(-3))^2 \\ y=(1)/(14)(x+3)^2+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vavby73qrcayb8m2pag76tdgvdovbzibih.png)
So equation of parabola is,
![y=(1)/(14)(x+3)^2+2](https://img.qammunity.org/2023/formulas/mathematics/college/u1zbpcqhoejm9i3nneo392bpk0bdxodwjb.png)