Given:
There are given that the total amount is 34900 dollars
Step-by-step explanation:
According to the question:
We need to find the value of the investment.
So,
To find the value of investments, we need to use the compound interest formula:
So,
From the formula of compound interest:
(a): For annually:
![A=P(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/39foo2gerf9tf1ffk32zwshrn339mz02kv.png)
Then,
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ A=34900(1+(0.08)/(1))^5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8g4ebc33car449b9gbp3eyl4tnzontwcsg.png)
Then,
![\begin{gathered} A=34,900(1+(0.08)/(1))^(5) \\ A=34900(1+0.08)^5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u693f1nmli81kcin77q26bpens7r7sd1j2.png)
Then,
![\begin{gathered} A=34,900(1+0.08)^(5) \\ A=34900(1.08)^5 \\ A=34900(1.46) \\ A=51279.55 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/95m2fwsnusr2sss0obo5zrymrm7iyfdjod.png)
Now,
(b): For the semiannual:
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ A=P(1+(r)/(2))^(2t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vxf528phta6b38sq5lyqm54a9iryokqgcj.png)
Then,
![\begin{gathered} A=P(1+(r)/(2))^(2t) \\ A=34900(1+(0.08)/(2))^(2(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2rlwzgzrlpmej59xnsx7dx3j5wtdotxzfr.png)
Then,
![\begin{gathered} A=34900(1+(0.08)/(2))^(2(5)) \\ A=34900(1+0.04)^(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a9b7upfk5ic1njtwsh7zmwml9lmlffdnkp.png)
Then,
![\begin{gathered} A=34900(1+0.04)^(10) \\ A=34900(1.04)^(10) \\ A=34900(1.48) \\ A=51660.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rib21g0nmqrwummpk59m5chbpse7fhdlvh.png)
(c): For monthly:
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ A=P(1+(r)/(12))^(12t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mb2yxbobupwzgd3bjbji6xz20qtsb7ogdr.png)
Then,
![\begin{gathered} A=P(1+(r)/(12))^(12t) \\ A=P(1+(r)/(12))^(12(5)) \\ A=P(1+(0.08)/(12))^(12(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bozeunzpsixwnrk95hzbhvbohliik2d6y0.png)
Then,
![\begin{gathered} A=34900(1+(0.08)/(12))^(12(5)) \\ A=34900(1+0.0067)^(60) \\ A=34,900(1.0067)^(60) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e6bb4u208lqyj00lpn7ikt3hpng3x16b09.png)
Then,
![\begin{gathered} A=34900(1.0067)^(60) \\ A=34900(1.49) \\ A=52099.02 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dpw8xu2n7o7zja6jzyyzxj8gpqifdipq4x.png)
And,
(d): For daily:
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ A=P(1+(r)/(365))^(365(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yzebt7cwdkrxa2sz803dvq5d370hx4lxpk.png)
Then,
![\begin{gathered} A=P(1+(r)/(365))^(365(5)) \\ A=34900(1+(0.08)/(365))^(365(5)) \\ A=34,900(1+0.000219)^(365(5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2be6zxguzy4hf5wt0576zprmqy95yccfby.png)
Then,
![\begin{gathered} A=34,900(1+0.000219)^(365(5)) \\ A=34,900(1.000219)^(1825) \\ A=34,900(1.49) \\ A=52140.53 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cfdb2adtnopodxyd70ym5utm138lw86wps.png)
Final answer:
Hence, the all values is shown below:
![\begin{gathered} (a).Annual:51279.55 \\ (b).Semiannual:51660.5 \\ (c).Monthly:52099.02 \\ (d).Daily:52140.53 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5u3zcz5tbqw3bagk9c2ir6nj0xand05whn.png)