we have the equation
![((y-4)^2)/(4)-((x+8)^2)/(9)=1](https://img.qammunity.org/2023/formulas/mathematics/college/4vphpvybb06mache9a6r00sl1sjd4rjfgs.png)
Part 1
Find out the center
The center is the ordered pair (-8,4)
Part 2
we have that
the transverse axis lies on the y-axis
a^2=4 ----------> a=2
b^2=9 --------> b=3
The coordinates of the vertices are
(-8,4+2) --------> (-8,6)
(-8,4-2) -------> (-8,2)
The vertices are (-8,6) and (-8,2)
Part 3
Find out the coordinates of Foci
Remember that
c^2=a^2+^2
c^2=4+9
c^2=13
c=√13
The coordinates of Foci are
(-8, 4+√13) and (-8,4-√13)
Part 4
Find out the equation of the asymptotes
The equation of te asymptotes is given bty
![y-k=\pm(a)/(b)(x-h)](https://img.qammunity.org/2023/formulas/mathematics/college/idcf7x5h7jnohbybir2dla0n21xonangx0.png)
where
h=-8
k=4
a=2
b=3
substitute
![y-4=\operatorname{\pm}(2)/(3)(x+8)]()
therefore
the equations are
![\begin{gathered} y=(2)/(3)(x+8)+4=\frac{2}{3\text{ }}x+(16)/(3)+4=\frac{2}{3\text{ }}x+(28)/(3) \\ y=-(2)/(3)(x+8)+4=-(2)/(3)x-(16)/(3)+4=-(2)/(3)x-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n3perg6e89kk82fvjuaruwv6lceuyxota9.png)
The asymptotes are
![\begin{gathered} y=\frac{2}{3\text{ }}x+(28)/(3) \\ \\ y=-(2)/(3)x-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9zc8t01dnk4yt101ef2esh4s7ej0gy6j0d.png)