There is a proportional relation between the actual heights of 2 objects and their shadows at the same time
![(h_1)/(h_2)=(sh_1)/(sh_2)](https://img.qammunity.org/2023/formulas/mathematics/college/4ctmjv6xc2at9rvo8zilpw7uwpc2ooncgq.png)
Since the shadow of the chimney is 32.5 m, then
![sh_1=32.5](https://img.qammunity.org/2023/formulas/mathematics/college/bymfzsdbjnudvci968f3g8s2cohth10h59.png)
Since the shadow of the pole is 2.72 m, then
![sh_2=2.72](https://img.qammunity.org/2023/formulas/mathematics/college/7rw3wj0y833bsc6isfk54t5lb2fzac99po.png)
Since the height of the pole is 2.4 m, then
![h_2=2.4](https://img.qammunity.org/2023/formulas/mathematics/college/4ycvpyv9xu2bzk0g2d9a4zj92wb41r0t3d.png)
Substitute them in the rule above
![(h_1)/(2.4)=(32.5)/(2.72)](https://img.qammunity.org/2023/formulas/mathematics/college/p24clmmjc8fc5fnh88njsjip6l9grjbxhg.png)
Use the cross-multiplication
![\begin{gathered} h_1*2.72=2.4*32.5 \\ 2.72h_1=78 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f8edv4p8qsgf9qjy2b2gpfmt31w7jznyn7.png)
Divide both sides by 2.72
![\begin{gathered} (2.72h)/(2.72)=(78)/(2.72) \\ h=28.67647059 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mt6h0lis2et19idwgs3dkt225tkjr4mavq.png)
Round it to the nearest 2 decimal places
The height of the chimney is 28.68 m