Answer:
Explanation:
Let us draw the triangle first.
Now, the law of cosines gives
![10^2=8^2+x^2-2\cdot8\cdot x\cos (80^o)](https://img.qammunity.org/2023/formulas/mathematics/college/un3jit9ebmi6hxxew5y87f19jzny3jzdbw.png)
simplifying the above gives
![100=64+x^2-16x\cos (80^o)](https://img.qammunity.org/2023/formulas/mathematics/college/jb9yhbzxzxr19dgdgcxkjglsdzszdprh3m.png)
subtracting 64 from both sides gives
![100-64=x^2-16x\cos (80^o)](https://img.qammunity.org/2023/formulas/mathematics/college/gc7oj0m3tazlpfzdyt9dw7x3xn59rbd2ds.png)
![\Rightarrow36=x^2-16x\cos (80^o)](https://img.qammunity.org/2023/formulas/mathematics/college/jjr5d0fdl1cukfgyjz35b0yzjlp2bunmog.png)
Rewriting the above in a more familiar form gives
![x^2-16\cos (80^o)x-36=0](https://img.qammunity.org/2023/formulas/mathematics/college/lcuebytdxyfc4etuyu9sffecq9yyhsned5.png)
which is a quadratic equation.
Using the quadratic formula we solve for x and get
![x=\frac{16\cos (80^o)\pm\sqrt[]{(16\cos (80^o))^2-4(1)(-36)}}{2(1)}](https://img.qammunity.org/2023/formulas/mathematics/college/akatuinzvr438vqyy3vjsyq0e4nsbrkyk1.png)
whose positive solution is
![\boxed{x=7.54791\ldots}](https://img.qammunity.org/2023/formulas/mathematics/college/4qa5mxfv9kwhtcgqtxawd0zmcpihyn90mo.png)
Next, we find the angle Θ.
To find Θ, we use the law of sines.
The law of sines in our case gives
![(10)/(\sin(80^o))=(8)/(\sin \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/2wknpppytjuacmucql3a6lc7xvmdfzlnjh.png)
cross multipication gives
![10\sin \theta=8\sin (80^o)](https://img.qammunity.org/2023/formulas/mathematics/college/3tfxb1wcrcttjigd26gtwi6pvmy4xoghhy.png)
dividing both sides by 10 gives
![\sin \theta=(8\sin (80^o))/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/iwcywoseriic5l7jnqugn9b89ngyyeve2r.png)
With the help of a calculator, we evaluate the right-hand side and get
![\sin \theta=0.787846](https://img.qammunity.org/2023/formulas/mathematics/college/kniqeoq7cruiaykkggr7t0ez2okr4069bk.png)
taking the inverse sine of both sides gives
![\begin{gathered} \boxed{\theta=51.984688^o\ldots^{}} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/99bstgos4ctp98kgsng07kk771sl7tepl0.png)
Last but not least, we find the value of α.
To find α, we use the fact that the sum of internal angles of a triangle must be 180°.
Therefore, we have
![\alpha+\theta+80^o=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/jju86jp02yr9h1u0m1v6xu5kb6kr6owec8.png)
putting in the value of Θ gives
![\alpha+51.984688^o+80^o=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/9gf6xfyogy4ay4zmjl353qunzwhldoaa6j.png)
simplifying and solving for α gives
![\boxed{\alpha=48.015^o}](https://img.qammunity.org/2023/formulas/mathematics/college/7wevcorcrz4mgkt2xk5vai4vp05l5o7u64.png)
Hence, our angle and side length measures rounded to the nearest tenth are:
![\begin{gathered} x=7.6 \\ \theta=52.0^o \\ \alpha=48.0^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6otm84bd2t8l1sftr9d3uyr184xkr3y7os.png)