Let x and y represent both numbers.
Given:
x = 1/4 * y
x + y = 15
Let's find the two numbers.
We have the system of equations:
![\begin{gathered} x=(1)/(4)y \\ \\ x+y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lzn2a2tz9ngjgrbmln8r24icbmt7fkj6qm.png)
Plug in 1/4y for x in the second equation:
![\begin{gathered} (1)/(4)y+y=15 \\ \\ \\ (5)/(4)y=15 \\ \\ 1.25y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6xzpbnovv8bckkyiggiiqpvmzx7sns04vs.png)
Divide both sides by 1.25:
![\begin{gathered} (12.5y)/(1.25)=(15)/(1.25) \\ \\ y=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/chygmpzz3xi7ua5bxvgjyoulcz42e5frl7.png)
Now, to solve for x plug in 12 for y in either the first or second equation.
Let's take the first equation:
![\begin{gathered} x=(1)/(4)y \\ \\ x=(1)/(4)*12 \\ \\ x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qpgjc5sc7x6p2omx28cvsetk36727tjvzb.png)
Therefore, the numbers are:
3, 12
ANSWER:
3, 12