Step-by-step explanation:
To figure out the lateral surface area of the cone, we will use the formula below
![A_(lateral)=\pi rl](https://img.qammunity.org/2023/formulas/mathematics/college/vbvvlwo5bpuaiplh9jfelpftvmzecrj3tz.png)
To figure out the slant height l, we will use the formula below
![\begin{gathered} l^2=5^2+6^2 \\ l^2=25+36 \\ l^2=61 \\ l=√(61) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/huo3n7jz6gw58hvt5h7wbjewtf57plgecp.png)
By substituting the values, we will have
![\begin{gathered} A_(lateral)=\pi rl \\ A_(lateral)=\pi*6*√(61) \\ A_(lateral)=147ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xo9g3pbikgg5n9xgidrwnuhpjenzrv1n0c.png)
Hence,
The laterla surface area of the cone is
![147ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/du7rf8ccztiztmqfhomx7uhghd82cjnp2m.png)
Part B:
To calculate the value of the are of the sides and bottom of the cylinder, we will use the formula below
![\begin{gathered} A_2=2\pi rh+\pi r^2 \\ where, \\ r=(12)/(2)ft=6ft \\ h=20ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6qdirrywwj3v0h06bezmlxxqnrltec0g8z.png)
By substituting the values, we will have
![\begin{gathered} A_(2)=2\pi rh+\pi r^(2) \\ A_2=2\pi*6*20+\pi*6^2 \\ A_2=240\pi+36\pi \\ A_2=276\pi \\ A_2=867.08ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wh4b6kopcrpxwvn0tv0wczh6amxy9dfomc.png)
Hence,
The surface area of the sides and both if the cylinder is about
![867ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/85ww7hlgw6dwhaeohzkwimcpw84uzowfvs.png)
Part C:
The total surface area of the of the figure wil be
![\begin{gathered} 147ft^2+867ft^2 \\ 1014ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4u755stmmknzb81037yuwg8r8qwpy0bebc.png)