Given Set H:
![H=\lbrace4,3,6,5\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/tmia19hgoc5uu4bzkfo16ockxif6at7c5s.png)
You can find the number of subsets the set has by using this formula:
![Number\text{ }of\text{ }subsets=2^n](https://img.qammunity.org/2023/formulas/mathematics/college/948mhs062jbp20ynzpf59gqqpo0mq6br9e.png)
Where "n" is the number of elements the set has.
In this case:
![n=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/8kdg5auj18v9mli51cp6fk817r2dz5zyx9.png)
Then:
![Number\text{ }of\text{ }subsets=2^4=16](https://img.qammunity.org/2023/formulas/mathematics/college/cn7dxdxomc5nfn47xxsui6om9ohl4cnwtw.png)
By definition, given a set:
![\lbrace a,b\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/t49xul8nb0e2qsfmbu7kmxisai7qzsanl8.png)
Its subsets are:
![\lbrace a\rbrace,\lbrace b\rbrace,\lbrace\phi\rbrace,\lbrace a,b\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/78clmu5fuz9zrhrldlp965rfw5shkzqkuk.png)
Therefore, in this case, you can determine that the possible subsets of the given set are:
![\lbrace4\rbrace,\lbrace3\rbrace,\lbrace6\rbrace,\lbrace5\rbrace,\lbrace4,3\rbrace,\lbrace4,6\rbrace,\lbrace4,5\rbrace,\lbrace3,6\rbrace,\lbrace3,5\rbrace,\lbrace6,5\rbrace,\lbrace4,3,6\rbrace,\lbrace3,6,5\rbrace,\lbrace4,6,5\rbrace,\lbrace4,3,5\rbrace,\lbrace4,3,6,5\rbrace,\lbrace\phi\rbrace]()
Hence, the answer is:
![\lbrace4\rbrace,\lbrace3\rbrace,\lbrace6\rbrace,\lbrace5\rbrace,\lbrace4,3\rbrace,\lbrace4,6\rbrace,\lbrace4,5\rbrace,\lbrace3,6\rbrace,\lbrace3,5\rbrace,\lbrace6,5\rbrace,\lbrace4,3,6\rbrace,\lbrace3,6,5\rbrace,\lbrace4,6,5\rbrace,\lbrace4,3,5\rbrace,\lbrace4,3,6,5\rbrace,\lbrace\phi\rbrace]()