66.2k views
2 votes
Tan(sin^-1 (5/7)) solve in radians

User Grobartn
by
7.9k points

1 Answer

1 vote
Trigonometry


\begin{gathered} \tan (\sin ^(-1)((5)/(7)))=(\sin (\sin ^(-1)((5)/(7))))/(\cos (\sin ^(-1)((5)/(7)))) \\ =\frac{\sin (\sin ^(-1)((5)/(7)))}{\sqrt[]{1-\sin ^2(\sin ^(-1)((5)/(7)))}} \\ =\frac{(5)/(7)}{\sqrt[]{1-(\sin (\sin ^(-1)((5)/(7))))^2}} \\ =\frac{(5)/(7)}{\sqrt[]{1-((5)/(7))^2}} \end{gathered}

We know


\begin{gathered} \sqrt[]{1-((5)/(7))^2}=\sqrt[]{1-(25)/(49)} \\ =\sqrt[]{(49-25)/(49)} \\ =\sqrt[]{(24)/(49)} \\ =\frac{\sqrt[]{24}}{7} \\ =\frac{2\sqrt[]{6}}{7} \end{gathered}

Replacing in the previous equation


\frac{(5)/(7)}{\frac{2\sqrt[]{6}}{7}}=\frac{5}{2\sqrt[]{6}}

Multiplying both sides of the fraction


\frac{5}{2\sqrt[]{6}}=\frac{5\sqrt[]{6}}{2\cdot6}=\frac{5\sqrt[]{6}}{12}

User Bouna
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories