Given:
Find-: Graph and rate of change.
Sol:
Rate of change :
The rate of change is used to mathematically describe the percentage change in value over a defined period of time, and it represents the momentum of a variable.
![\text{ Slope = }(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/le9ajmmhsdgp1yh5jqyfuo14dqr0xn87g9.png)
Where,
![\begin{gathered} (x_1,y_1)=(1,1.25) \\ \\ (x_2,y_2)=(2,2.4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ri2bqkx7cki6jfd7ju9217kiyxbc2m2020.png)
So the slope is:
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ \\ m=(2.4-1.25)/(2-1) \\ \\ m=1.15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4t6vt6yr0en87800pn2gh3rosd4l6h67ge.png)
The general form of the equation is:
![\begin{gathered} y=mx+c \\ \\ y=1.15x+c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/krj80vk2bd22pi4f3u6da4livdkxoxj8s9.png)
The value of "c" is:
![\begin{gathered} (x,y)=(1,1.25) \\ \\ y=1.15x+c \\ \\ 1.25=1.15(1)+c \\ \\ c=1.25-1.15 \\ \\ c=0.10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kt2yzvi221uiy5az4yj55xhh8ok1k4t1y3.png)
So equation of a line is:
![\begin{gathered} y=mx+c \\ y=1.15x+0.10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2hdxzmbi41nbx7cxha65okwy51hurj0lwf.png)
The graph of the line is: