First, we have to find the slope using the following formula.
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Where,
![\begin{gathered} x_1=-5 \\ x_2=4 \\ y_1=2 \\ y_2=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5c80kcqk25aau8axedp7v7vwvwjx81x7pn.png)
Let's use the coordinates above to find the slope.
![m=(6-2)/(4-(-5))=(4)/(4+5)=(4)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/daims7us6cm2hhs1fpshz99u3a7ejqj1wo.png)
Now, let's use the point-slope formula to find the equation of the line.
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
Where,
![\begin{gathered} m=(4)/(9) \\ x_1=-5 \\ y_1=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i008a3554b8iqz61hc49jrzxpucpo0l4cd.png)
![\begin{gathered} y-2=(4)/(9)(x-(-5)) \\ y-2=(4)/(9)(x+5) \\ y-2=(4)/(9)x+(20)/(9) \\ y=(4)/(9)x+(20)/(9)+2 \\ y=(4)/(9)x+(38)/(9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ti48uc3ckmn6dumn2icz34yil542hmq087.png)
Therefore, the equation in slope-intercept form is y = 4/9x + 38/9.