We have
![\log (5x)+\log (7x)-\log (2x)-\log (4x)](https://img.qammunity.org/2023/formulas/mathematics/college/fnk5tswtxf18w03qj25aw7o1s6oknrnwjh.png)
We will use the next properties
![\log (a)+\log (b)=\log (ab)](https://img.qammunity.org/2023/formulas/mathematics/college/i4iijg4nivrm1i2bd374k1mzjvpo7hnh0d.png)
![\log (a)-\log (b)=\log ((a)/(b))](https://img.qammunity.org/2023/formulas/mathematics/college/b1b8dt0ybhhs7t9ahqtrlptqqu39wqbec0.png)
Then we apply the properties
Here we use the first property two simplify the first two terms
![\begin{gathered} \log (5x\cdot7x)-\log (2x)-\log (4x) \\ \log (35x^2)-\log (2x)-\log (4x) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pnnx74dtowtmcx6ei2c4h6pznc8gejlgb6.png)
Here we use the second property to simplify the first three terms
![\begin{gathered} \log ((35x^2)/(2x))-\log (4x) \\ \log ((35x)/(2))-\log (4x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j4lq8muc5jncaz6lmx4jbi2k5c4lw5ynfy.png)
Here we use the second property to simplify the whole expression
![\log (((35x)/(2))/(4x))=\log ((35)/(8))](https://img.qammunity.org/2023/formulas/mathematics/college/650zduw308zml1qxgdcxclv75bfwpdkezc.png)
ANSWER
log(35/8)