Given that the grant writer wants to increase all the amounts by 4% for Year 2, by 2.5% for Year 3, and by another 2% for Year 4, you can convert each percent to a decimal number by dividing them by 100:
![4\text{ \%}=(4)/(100)=0.04](https://img.qammunity.org/2023/formulas/mathematics/college/15xt0a2zwsoujghaausqjr2182bgf4z32y.png)
![2.5\text{ \%}=(2.5)/(100)=0.025](https://img.qammunity.org/2023/formulas/mathematics/college/riqlyhjw2kdprotcmqu3m6s969voipv8bq.png)
![2\text{ \%}=(2)/(100)=0.02](https://img.qammunity.org/2023/formulas/mathematics/college/633e382cufhz0uxwl24ry535tgy94t86l1.png)
• You know that in Year 1, the amount of money budgeted for Salaries and benefits is $115,000. Therefore:
- In Year 2 it will be (in dollars):
![115,000+(115,000)(0.04)=119,600](https://img.qammunity.org/2023/formulas/mathematics/college/z8kf4l688enoaemccpyk8y61x3n2fz6tho.png)
- In Year 3:
![119,600+(119,600)(0.025)=122,590](https://img.qammunity.org/2023/formulas/mathematics/college/22fz0342efl3zkdb37flcdkjyc06av94ia.png)
- In Year 4:
![122,590+(0.02)(122,590)\approx125,042](https://img.qammunity.org/2023/formulas/mathematics/college/59smuwfz2eyc89hch7p5puxgd8lk52t759.png)
• Apply the same procedure for Insurances, knowing that, for Year 1 the budget is $14,500:
- In Year 2:
![14,500+(14,500)(0.04)=15,080](https://img.qammunity.org/2023/formulas/mathematics/college/4wtx3h8iyb2hc7zw6dm2vfpbva3ixg419j.png)
- In Year 3:
![15,080+(15,080)(0.025)=15,457](https://img.qammunity.org/2023/formulas/mathematics/college/tu6ay5o71jrl04bp06kjkc6i4wlpnrxmed.png)
- In Year 4:
![15,457+(0.02)(15,457)\approx15,766](https://img.qammunity.org/2023/formulas/mathematics/college/w5hoymh9takak0619ckpmm9zo86tntj33v.png)
• For Resources and Supplies, you get:
- In Year 2:
![5,500+(5,500)(0.04)=5720](https://img.qammunity.org/2023/formulas/mathematics/college/c8uasshnz3xocflmnkp4pyv1tljaudsqdc.png)
- In Year 3:
![5,720+(5,720)(0.025)=5,863](https://img.qammunity.org/2023/formulas/mathematics/college/nyetrwc085h1rh4n1eqcvzpqgnjnp8rguc.png)
- In Year 4:
![5,863+(0.02)(5,863)\approx5,980](https://img.qammunity.org/2023/formulas/mathematics/college/sdk1dst9tbc0hbd2l6bpowy4d6vz3i36ms.png)
Hence, the answer is: