Given:
Given that a cross section of gazebo.
Required:
To find the value of x.
Step-by-step explanation:
From the given figure the left side triangle is a right triangle.
And having side value,
![\begin{gathered} c=22-2 \\ \\ =20feet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kyusyb5nkfmttfxr5o9ll7n9y1qpvmcmjf.png)
And angle,
![\begin{gathered} \angle A=10 \\ \angle C=90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ryjy1f15izww36sc7uvs7eju7lx352fe2.png)
Now we have to find the other two side values.
Now we find the height of the triangle let it be 'a'.
Now by using sine rule,
![\begin{gathered} (\sin A)/(a)=(\sin C)/(c) \\ \\ (\sin10)/(a)=(\sin90)/(20) \\ \\ (0.1736)/(a)=(1)/(20) \\ \\ a=3.4729 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bfrylcdrqbg9902g8f5fh5j7go1waqd9n7.png)
Now we have to find the value of other side let the other side be 'b',
Now
![\begin{gathered} c^2=a^2+b^2 \\ \\ 20^2=(3.4729)^2+b^2 \\ \\ b^2=400-12.061 \\ \\ b^2=387.939 \\ \\ b=19.6961 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u1ujgqavthqwrhecna1li2k61qeotcb6np.png)
Now the value of x is,
![\begin{gathered} x=2b \\ \\ x=2(19.6961) \\ \\ x=39.39 \\ \\ x\approx39feet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fo7f2fsly19nsei66s7x6cawa1to8xeq2s.png)
Final Answer:
![x=39feet](https://img.qammunity.org/2023/formulas/mathematics/college/5pkkmy20dpdjtfhhsvlxpbvxqvycksnwp7.png)