We can use the first tio ordered pairs (3,2) and (6,4) to find the rate of change:
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ (x_1,y_1)=(3,2) \\ (x_2,y_2)=(6,4) \\ \Rightarrow m=(4-2)/(6-3)=(2)/(3) \\ m=(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/auggp0lfb0dztt856t1zlwgf8ti1ouxi6v.png)
then, using the first ordered pair, we can find the relation function:
![\begin{gathered} y-y_1=m(x-x_1) \\ \Rightarrow y-2=(2)/(3)(x-3)=(2)/(3)x-2 \\ \Rightarrow y=(2)/(3)x-2+2=(2)/(3)x \\ y=(2)/(3)x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u0dvqmlw4kt956euu32eh8tr80qbizntsv.png)
thus, the equation that describes the relationship is y = 2/3 x
Next, to find the distance of the zebra after 48 minutes, we have to make x = 48 and solve for y:
![\begin{gathered} x=48 \\ \Rightarrow y=(2)/(3)\cdot(48)=(96)/(3)=32 \\ y=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2msbwba316p7hy6cqahgq1pwljthijnn7x.png)
therefore, the zebra would travel 32 miles in 48 minutes