60.1k views
1 vote
Find an nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing utility, use it to graph the function and verifythe real zeros and the given function value.n = 3;2 and 2 i are zeros;f(-1)=30f(x) =(Type an expression using x as the variable. Simplify your answer.)Help me solve this►View an example Get more helpClear allCheck answerCopyright © 2022 Pearson Education Inc. All rights reserved. Terms of Use | Privacy Policy | Permissions | Contact UCon

User Mxdbld
by
4.6k points

1 Answer

6 votes

We need to find a polynomial function f(x) with degree 3 and zeros 2 and 2i, such that:


f(-1)=30

Since 2i is a zero, -2i is also a zero of this function. Thus, we have:


f(x)=a(x-2)(x-2\imaginaryI)(x+2\imaginaryI)

where a is a constant.

Expanding the expression on the right side, we obtain:


\begin{gathered} \\ f(x)=a(x-2)\lbrack x²-(2i)²\rbrack \\ \\ f(x)=a(x-2)(x²-4i²),\text{ i^^b2=-1} \\ \\ f(x)=a(x-2)(x²+4) \\ \\ f(x)=a(x³-2x²+4x-8) \end{gathered}

Now, using f(-1) = 30, we obtain:


\begin{gathered} 30=a\lbrack(-1)³-2(-1)²+4(-1)-8\rbrack \\ \\ 30=a(-1-2-4-8) \\ \\ 30=a(-15) \\ \\ a=(30)/(-15) \\ \\ a=-2 \end{gathered}

Therefore, the function is:

Answer


f(x)=-2x^(3)+4x^(2)-8x+16

Find an nth-degree polynomial function with real coefficients satisfying the given-example-1
User Cavin Macwan
by
3.9k points