Given:
![tan\theta=(1)/(7)\text{ and sin}\theta<0](https://img.qammunity.org/2023/formulas/mathematics/college/zewbzczt1p1clog3572u61chiz9gtu822u.png)
Required:
Find the value of cos in Radical form.
Step-by-step explanation:
Use the trigonometric ratio:
![\begin{gathered} tan\theta=(opp.)/(adj.) \\ tan\theta=(1)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/67yhjk86pi191vez444pzoj7f8i9cpqgcf.png)
Therefore opp. = 1 and adj. = 7
Find the hypotenuse by using the Pythagoras theorem.
![\begin{gathered} hyp.=√((opp.)^2+(adj.)^2) \\ hyp.=√((1)^2+(7)^2) \\ hyp.=√(1+49) \\ hyp.=√(50) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zbqsuoa6x229k5pm2p8slrwade00ktz6or.png)
Use the trigonometric ratio for cosine as:
![\begin{gathered} cos\theta=(adj.)/(hyp.) \\ cos\theta=(7)/(√(50)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vok299ro11vdoyp21a1h9utqwn5gpweh8j.png)
Given that sin < 0 and tan = 1/7 > 0
It will be possible only when cos < 0
So
![cos\theta=-(7)/(√(50))](https://img.qammunity.org/2023/formulas/mathematics/college/sgmjewsptjz4qi0uqkiunwihaw8klvprln.png)
Final Answer:
![cos\theta=-(7)/(√(50))](https://img.qammunity.org/2023/formulas/mathematics/college/sgmjewsptjz4qi0uqkiunwihaw8klvprln.png)