Given,
The foci of the ellipse is (0, +2)(0.-2)
The co vertices of the ellipse is (1, 0)(-1, 0)
The genral equation of ellipse is,

The equation of the foci is,

The equation of co vertices is,

we know that,
![\begin{gathered} b^2=a^2+c^2 \\ b=\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vjzr37z1r67cmpd4lasq0xktwu1nm43eud.png)
Substituting the value then,
![\begin{gathered} (x^2)/(1^2)+\frac{y^2}{\sqrt[]{5}^2}=1 \\ x^2+(y^2)/(5)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zbnuss8dzoov648vsgmuqqj64y0kggdy2p.png)
Hence, option d is correct.