99.1k views
4 votes
Which are the foci of the hyperbola represented by… Thanks!

Which are the foci of the hyperbola represented by… Thanks!-example-1
User HellaMad
by
8.7k points

1 Answer

0 votes

The equation is given to be:


x^2-3y^2+12=0

We can write the equation in the standard form of the equation of a hyperbola to be:


(\left(y-0\right)^2)/(2^2)-(\left(x-0\right)^2)/(\left(2√(3)\right)^2)=1

Therefore, we have the following parameters:


\left(h,\:k\right)=\left(0,\:0\right),\:a=2,\:b=2√(3)

Recall the hyperbola foci definition:


\begin{gathered} \mathrm{For\:an\:up-down\:facing\:hyperbola,\:the\:Foci\:\left(focus\:points\right)\:are\:defined\:as}\:\left(h,\:k+c\right),\:\left(h,\:k-c\right),\: \\ \mathrm{where\:}c=√(a^2+b^2)\mathrm{\:is\:the\:distance\:from\:the\:center}\:\left(h,\:k\right)\:\mathrm{to\:a\:focus} \end{gathered}

Therefore, the value of c will be:


\begin{gathered} c=\sqrt{2^2+(2√(3))^2} \\ c=4 \end{gathered}

Therefore, the foci will be:


\begin{gathered} \left(h,\:k+c\right),\:\left(h,\:k-c\right)=\left(0,\:0+4\right),\:\left(0,\:0-4\right) \\ Foci=\left(0,\:4\right),\:\left(0,\:-4\right) \end{gathered}

The correct option is the FIRST OPTION.

User Emond
by
7.1k points