First, let's put the info into symbols:
![\begin{gathered} X_(FeBr_2)=\text{ 6.15*10}^(-2) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/yaxrdr562gd7xg6sq52hriuugobjxdwyk5.png)
As the mole fractions have to add up to 1, we can calculate the water mole fraction, substracting:
![X_(H_2O)=\text{ 1-6.15*10}^(-2)=0.9385](https://img.qammunity.org/2023/formulas/chemistry/college/49pg9suvxovwqw8z9y5l60cftumhxlgwcf.png)
If we make the supposition that we have 1 mole of the solution, we would have the next quantities of each substance:
![6.15*10^(-2)\text{ moles of FeBr}_2\text{ and 0.9385 moles of water. }](https://img.qammunity.org/2023/formulas/chemistry/college/e0dg5yq927fc46vj0k4fcz48p8a4wp3hqa.png)
Now, we can convert these moles into mass through the molecular weight of each substance:
![\begin{gathered} M.W\text{ of water: 2*1+16=18 g/mole} \\ M.W.\text{ of iron \lparen II\rparen bromide: 56+80*2=216 g/mole} \\ \\ 6.15*10^(-2)moles\text{ FeBr}_2*\frac{216\text{ g}}{1\text{ mole}}=\text{ 13.284 g FeBr}_2 \\ \\ 0.9385\text{ moles H}_2O\text{ * }\frac{18\text{ g}}{1\text{ mole}}=16.893\text{ g H}_2O \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/di3pci5o6mi3gt5cidakhedcmjdvcsxpka.png)
Now, we can calculate the mass percentage, because we have the mass of the substrate and the mass of the solution (the addition of water and iron (II) bromide):
![\%\text{ m/m FeBr}_2=\frac{13.284\text{ g}}{13.284g+16.893g}*100=44.020\text{ \% m/m}](https://img.qammunity.org/2023/formulas/chemistry/college/p2gvb8qrri7grwo9u9kubbfen2yx0tm4tm.png)
The answer is that the %m/m of iron bromide in the solution is 44.020%