45.6k views
2 votes
Prove the segments joining the midpoint if consecutive sides of an isosceles trapezoid form a rhombus.

Prove the segments joining the midpoint if consecutive sides of an isosceles trapezoid-example-1
Prove the segments joining the midpoint if consecutive sides of an isosceles trapezoid-example-1
Prove the segments joining the midpoint if consecutive sides of an isosceles trapezoid-example-2
User Istari
by
7.7k points

1 Answer

4 votes

DEFG is a rhombus by definition of rhombus (option B)

Step-by-step explanation:

To prove that DEFG is a rhombus, we will find the distance between all the 4 sides of the quadrilateral. A rhombus has all 4 sides equal.

Distance formula is given as:


$$dis\tan ce\text{ = }\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}$$
\begin{gathered} distance\text{ DE: D}(-a-b,\text{ c})\text{ and E}(0,\text{ 2c}) \\ x_1=-a-b,y_1=c,x_2=0,y_2\text{ = 2c} \\ distance\text{ DE = }\sqrt{(0\text{ - }(-a-b))^2\text{ + }(2c\text{ - c})^2} \\ distance\text{ DE = }\sqrt{(0\text{ +}a+b)^2\text{ + c}^2}\text{ } \\ distance\text{ DE = }\sqrt{(\text{a + b})^2+c^2} \end{gathered}
\begin{gathered} distance\text{ EF: E}(0,\text{ 2c})\text{ and F}(a\text{ + b, c}) \\ x_1=0,y_1=2c,x_2=a+b,y_2\text{ = c} \\ distance\text{ EF = }\sqrt{(c\text{ - 2c})^2+\text{ }(a\text{ + b - 0})^2} \\ distance\text{ EF = }√((-c)^2+(a+b)^2)\text{ } \\ \text{distance EF = }\sqrt{c^2\text{ + }(a+b)^2} \end{gathered}
\begin{gathered} distance\text{ GF: G}(0,\text{ 0})\text{ and F }(a+b,\text{ c}) \\ x_1=0,y_1=0,x_2=a+b,y_2\text{ = c} \\ distance\text{ GF = }\sqrt{(c\text{ - 0})^2+\left(a+b-0\right)^2} \\ distance\text{ GF = }√(c^2+(a+b)^2) \end{gathered}
\begin{gathered} distance\text{ DG: D}(-a-b,\text{ c})\text{ and G }(0,\text{ 0}) \\ x_1=-a-b,y_1=c,x_2=0,y_2\text{ = 0} \\ distance\text{ GD = }√((0-c)^2+(0-(-a-b))^2) \\ distance\text{ GD = }√((-c)^2+\left(0+a+b\right)^2) \\ distance\text{ GD = }\sqrt{c^2\text{ + }(a+b)^2} \end{gathered}

From our calculation, Distance DE = Distance EF = Distance GF = Distance GD

All 4 sides are equal (congruent)

DEFG is a parallelogram with congruent sides. So DEFG is a rhombus by definition of rhombus (option B)

User Rdasxy
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories