Solution:
Given the figure below:
To solve for the missing angles,
Step 1: Solve for c.
The sum of the interior angles of a triangle equals 180 degrees.
Thus,
![\begin{gathered} 48+58+c=180(sum\text{ of interior angles in a triangle\rparen} \\ \Rightarrow106+c=180 \\ subtract\text{ 106 from both sides,} \\ 106-106+c=180-106 \\ \Rightarrow c=74\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2kffv809tud99z9h0tsklxm3hctj96juty.png)
Step 2: Solve for d.
The sum of angles on a straight line gives 180 degrees.
![\begin{gathered} 58+d=180\text{ \lparen sum of angles on a straight line\rparen} \\ subtract\text{ 58 from both sides,} \\ 58-58+d=180-58 \\ \Rightarrow d=122\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwz6b5cml208b55eyewrkrr4018nootgwl.png)
Step 3: Solve for a.
From the figure,
![a=58\degree\text{ \lparen alternate angles\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/vzmkhcqnczqu4nl8knor250nryjj0v7x7c.png)
Step 4: Solve for b.
From the figure,
![\begin{gathered} b+c=d\text{ \lparen alternate angles\rparen} \\ \Rightarrow b+74=122 \\ subtract\text{ 74 from both sides,} \\ b+74-74=122-74 \\ \Rightarrow b=48\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v5cpe2vl1z6hizvo5i1xsrsjsfhn4xae6o.png)
Hence, we have
![\begin{gathered} a=58\degree \\ b=48\degree \\ c=74\degree \\ d=122\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rj0cr6dpff20xiau19opnst5y1z7komg7w.png)