The correct option is exponential
Steps
Let's check if the data is linear. Recall that the general form for a linear equation is:
![\begin{gathered} y\text{ = mx + c} \\ \text{where m = }(\Delta y)/(\Delta x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r9e1t5rgbm1huq16wt9dbgifddr0piv8sw.png)
Since the slope should be constant, we can check across two data points.
Using points (3, 48) and (4, 12). The slope(m) is:
![\begin{gathered} m\text{ = }\frac{12\text{ - 48}}{4\text{ -3}} \\ =\text{ -36} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9y362u9rq8ghwz7h7s35em1cegb7u5w1k9.png)
Using the points (4,12) and (5, 3). The slope(m) is :
![\begin{gathered} m\text{ = }\frac{3\text{ - 12}}{5-4} \\ =\text{ -9} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f7ld1ega825229lic59rw2eireog44p6hk.png)
Since, the slope is inconsistent, the table is not linear
To check if it is exponential,
Recall that the general equation for an exponential function is :
![y=a^x](https://img.qammunity.org/2023/formulas/mathematics/college/6xw6hwmejwbs8dzyczy86pkzmxnm6hsfah.png)
Using the data points (3,48) and (4,12), we can solve for the constant a, and then check if it is the same across the table.
![\begin{gathered} 48=a^3\text{ } \\ 12=a^4 \\ \text{dividing equation 1 by equation 2} \\ a\text{ = }(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wat2ptct5yshrvxpq2kao6auy6gcvp09oj.png)
Check:
using points (4,12) and (5,3)
![\begin{gathered} 12=a^4 \\ 3=a^5 \\ \text{dividing equation 2 by 1} \\ a\text{ = }(3)/(12) \\ =\text{ }(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vnvtzprj6hew1ch00di9j5o00061bgk4uh.png)
Since a is constant across data points, the table represents an exponential equation