The slope-intercept form of the equation of a line is:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
where m is the slope and b is the y-intercept.
We can find the slope m of a line passing through points (x₁,y₁) and (x₂,y₂) using the formula:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Thus, for the points (-4,-1) and (3,4), we have:
x₁ = -4
y₁ = -1
x₂ = 3
y₂ = 4
Then, we find:
![\begin{gathered} m=(4-(-1))/(3-(-4)) \\ \\ m=(4+1)/(3+4) \\ \\ m=(5)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xmttv3hpkc063lvm4f38xd0h3m36eamy87.png)
So, the equation we found so far is:
![y=(5)/(7)x+b](https://img.qammunity.org/2023/formulas/mathematics/college/8h84jxcg1n79sbqk76r7396i9ufrfj9len.png)
Now, we can find the value of b by replacing x and y with the coordinates of the point (3,4):
![\begin{gathered} 4=(5)/(7)(3)+b \\ \\ 4\cdot7=(15)/(7)\cdot7+7b \\ \\ 28=15+7b \\ \\ 7b=28-15 \\ \\ b=(13)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b3epr46gtgjp60ci86gvvtwwksn8yb1mdm.png)
Therefore, the answer is:
![y=(5)/(7)x+(13)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/pundvlht74ys8d54vdk81vrtw3bv6r0071.png)