![\begin{gathered} (f-g)(x)=-6-x^2 \\ \text{Domain: all real numbers} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n6ukn1po792p46zkzt6kd8airtog3tlqka.png)
Step-by-step explanation
Step 1
Let
![\begin{gathered} f(x)=-6 \\ g(x)=x^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ourboui4aucjc4ydnod9zmulwaz9bve2vy.png)
hence
![(f-g)(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zg5zkud8gngrir2yydrfwgssx0yrm3uy1i.png)
would be
![\begin{gathered} (f-g)(x)=f(x)-g(x)=-6-x^2 \\ (f-g)(x)=-6-x^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1evagiid23ksgrepb3ak47iaikomfgg8yx.png)
Step 2
now, let's find the domain of the function:
The domain of a function is the set of all possible inputs for the function( the x values wher the function si defined),
the solution we got is a polynomious , The domain of a polynomial is the entire set of real numbers.
so, the answer is
Domain: all real numbers
I hope this helps you