Let x be the volume of the cylinder with diameter 1m
Let y be the volume of the cylinder with diameter 0.8m
The volume of concrete required to make the drain is:
![V=x-y](https://img.qammunity.org/2023/formulas/mathematics/college/qrfxd0qjfszhemv39w4axlj9v5g7hfbf3l.png)
___________
Volume of a cylinder:
![V=\pi\cdot((d)/(2))^2\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/ljehgkhjkivvgv7cu4mfuh3grlidje7l3n.png)
h is the height
d is the diameter
For the given drain:
![\begin{gathered} V=(\pi\cdot((d_x)/(2))^2\cdot h)-(\pi\cdot((d_y)/(2))\cdot h)_{} \\ \\ V=(((d_x)/(2))^2-((d_y)/(2))^2)\pi\cdot h \\ \\ V=(((d_x)^2)/(4)-((d_y)^2)/(4))\pi\cdot h \\ \\ V=(((d_x)^2-(d_y)^2)/(4))\pi\cdot h \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/va96p1u1u4czrlrm624j60le4u15pb7k6t.png)
![\begin{gathered} V=(((1m)^2-(0.8m)^2)/(4))\pi\cdot10m \\ \\ V=(1m^2-0.64m^2)/(4)\cdot\pi\cdot10m \\ \\ V=(0.36m^2)/(4)\cdot\pi\cdot10m \\ \\ V=(3.6\pi)/(4)m^3 \\ \\ V=0.9\pi m^3 \\ \\ V\approx2.8m^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/losxgnd3k46i5ppt791gakyqthqjm9r00v.png)
Then, the volume of concrete required is 2.8 cubic meter