7.5k views
4 votes
If m∠B = 111°, a = 12, and c = 6, what are the measures of the remaining side and angles? (it is a triangle) m∠A = 47.4°, m∠C = 21.6°, b = 15.2 m∠A = 47.4°, m∠C = 21.6°, b = 15.9 m∠A = 44.8°, m∠C = 24.2°, b = 15.9 m∠A = 44.8°, m∠C = 24.2°, b = 15.2

If m∠B = 111°, a = 12, and c = 6, what are the measures of the remaining side and-example-1

1 Answer

6 votes

To answer, we will first need to use the Law of cosines. Assuming the angles ∠A, ∠B and ∠C are opposite to the sides a, b, and c, we can use the formula of the Law of Cosines to find the missing side:


b^2=a^2+c^2-2ac\cos B^{}

Thus, we have:

m∠B = 111°

a = 12

c = 6


\begin{gathered} b^2=12^2+6^2-2\cdot12\cdot6\cdot\cos 111\degree \\ b^2=144+36-144\cdot(-0.35836\ldots) \\ b^2=231.604\ldots \\ b=15.2185\ldots\approx15.2 \end{gathered}

Now that we know all sides and one of the angles, we can use the Law of Since:


(\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c)

Thus:


\begin{gathered} (\sin A)/(a)=(\sin B)/(b) \\ \sin A=a\cdot(\sin B)/(b)=12\cdot(\sin111\degree)/(15.2185\ldots)=(0.9335\ldots)/(15.2185\ldots)=0.7361\ldots \\ A=\arcsin 0.7361\ldots=47.4034\ldots\degree\approx47.4\degree \end{gathered}

And:


\begin{gathered} (\sin C)/(c)=(\sin B)/(b) \\ \sin C=c\cdot(\sin B)/(b)=6\cdot(\sin111\degree)/(15.2185\ldots)=(0.9335\ldots)/(15.2185\ldots)=0.3680\ldots \\ C=\arcsin 0.3680\ldots=21.5965\ldots\degree\approx21.6\degree \end{gathered}

So, we have:


\begin{gathered} m\angle A\approx47.4\degree \\ m\angle C\approx21.6\degree \\ b\approx15.2 \end{gathered}

Which corresponds to the first alternative.

User Mehrtash
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories