![\begin{gathered} a)\text{ }\hat{y}=-1.3385+0.104x \\ b)\text{ 89.79} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cqh3lbwcqrujv0jjkgu9mgducpkn87val9.png)
1) Let's start by making a table for that:
So now let' calculate the mean X bar , and Y bar:
![\begin{gathered} x=(88+75+76+92+96+94+83+90+99+65+77+88+82+83+94+97)/(16) \\ \bar{x}=86.1875 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ca4iapkothdkiocg0r1danjfv9pu5cqa5k.png)
Similarly for the average of y:
![\bar{y}=7.625](https://img.qammunity.org/2023/formulas/mathematics/college/20nk4y97jtla2lnnzu942nljhvptbeql4j.png)
And now let's calculate the Standard Deviation for that sample Sx, and Sy:
![\begin{gathered} S_x=\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}}=9.502411975 \\ S_y=\sqrt[]{\frac{\sum^{}_{}(y_i-\bar{y})^2}{n-1}}=1.190238071 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dhsmr3w9axvvbgonu5oompc35aqkechjs8.png)
And finally, let's calculate the correlation coefficient: One over n-1 times the Summation of the Standard deviations of the sample:
![\begin{gathered} r=(1)/(n-1)\cdot\sum ^{}_{}(\frac{x_i-\bar{x}}{S_x})(\frac{y-\bar{y}}{S_y}) \\ r=0.8318499656 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gqyd1rpqzpw41upnqrik8zgzb8n44obhc9.png)
a) We can now start to write out the Least Squares Regression equation is as it follows calculating the slope
![b_1=r\cdot(S_y)/(S_x)\Rightarrow b_1=0.8318499656\cdot(1.190238071)/(9.502411975)=0.104](https://img.qammunity.org/2023/formulas/mathematics/college/y6n2eeez0sdqirv4px6v0na68hjkb523vd.png)
And the linear coefficient (y-intercept)
![\begin{gathered} b_0=\bar{y}-b_1\bar{x} \\ b_0=7.625-0.104\cdot86.1875 \\ b_0=-1.3385 \\ \hat{y}=-1.3385+0.104x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qefay5j2xqul7tacdnomps3iyz84k5ep0x.png)
b) Since the number of hours of sleeping on average is given we can plug into y the number of hours to get x the score, Just like that:
![\begin{gathered} \hat{y}=b_0+b_1x \\ \hat{y}=-1.3385+0.104x \\ 8=-1.3385+0.104x \\ 8+1.3385=0.104x \\ (9.3385)/(0.104)=(0.104x)/(0.104) \\ x\approx89.79 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e9hu5sfhfc2377azatjvje7yfea84rfbgq.png)
3) Hence the answer is
![\begin{gathered} a)\text{ }\hat{y}=-1.3385+0.104x \\ b)\text{ 89.79} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cqh3lbwcqrujv0jjkgu9mgducpkn87val9.png)