The function is given to be:
![f(x)=-0.5(x-8)^2-2](https://img.qammunity.org/2023/formulas/mathematics/college/33ziaorc22vx3kw15jxht7nd46ks6cj9mb.png)
To calculate the average rate of change between two points, we can use the formula:
![\Rightarrow(f(a)-f(b))/(a-b)](https://img.qammunity.org/2023/formulas/mathematics/college/dzwjysqx9kzyddzxemda8x730wgtoxfo38.png)
where a and b are the points.
For the function provided, we are to find the rate of change between -4 and 8. Hence, our formula will be:
![(f(-4)-f(8))/(-4-8)=(f(-4)-f(8))/(-12)](https://img.qammunity.org/2023/formulas/mathematics/college/of4sfjcinqm54o9f9a20khel0u4gbn76ej.png)
We can evaluate f(-4) and f(8) to be:
![\begin{gathered} f(-4)=-0.5(-4-8)^2-2=-0.5(-12)^2-2=-0.5(144)-2=-72-2=-74 \\ f(8)=-0.5(8-8)^2-2=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yqw01aiha4ozbvw23i70c3ibfacmv8su06.png)
Therefore, the average rate of change is calculated to be:
![\Rightarrow(-74-(-2))/(-12)=(-74+2)/(-12)=(-72)/(-12)=6](https://img.qammunity.org/2023/formulas/mathematics/college/ozoae2ft43m9s442ku4gjhlgo6h4h1dqy7.png)
The average rate of change is 6.