117k views
4 votes
I need help in math can you please help me

I need help in math can you please help me-example-1
User Mayelin
by
7.7k points

1 Answer

4 votes

To verify the identity we need to remember the definitions of the trigonometric functions:


\begin{gathered} \tan \theta=(\sin \theta)/(\cos \theta) \\ \cot \theta=(\cos \theta)/(\sin \theta) \\ \sec \theta=(1)/(\cos \theta) \\ \csc \theta=(1)/(\sin \theta) \end{gathered}

With this in mind:


\begin{gathered} \text{tan}^2\theta-\cot ^2\theta=(\sin^2\theta)/(\cos^2\theta)-(\cos ^2\theta)/(\sin ^2\theta) \\ =(\sin ^4\theta-\cos ^4\theta)/(\cos ^2\theta\sin ^2\theta) \\ =((\sin ^2\theta+\cos ^2\theta)(\sin ^2\theta-\cos ^2\theta))/(\cos ^2\theta\sin ^2\theta) \end{gathered}

Now we need to remembert the identity:


\sin ^2\theta+\cos ^2\theta=1

then:


\begin{gathered} \tan ^2\theta-\cot ^2\theta=((\sin^2\theta+\cos^2\theta)(\sin^2\theta-\cos^2\theta))/(\cos^2\theta\sin^2\theta) \\ =(\sin ^2\theta-\cos ^2\theta)/(\cos ^2\theta\sin ^2\theta) \\ =(\sin^2\theta)/(\cos^2\theta\sin^2\theta)-(\cos ^2\theta)/(\cos ^2\theta\sin ^2\theta) \\ =(1)/(\cos^2\theta)-(1)/(\sin ^2\theta) \\ =\sec ^2\theta-\csc ^2\theta \end{gathered}

User Pooven
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories