Answer
x = 3
Step-by-step explanation
Given inequality:
![(x+5)/(3)<2x](https://img.qammunity.org/2023/formulas/mathematics/college/ogvlemcgtv9drvtyrj9kclij93h87ty397.png)
Multiply both sides of the inequality by 3 in order to clear fraction:
![\begin{gathered} (x+5)/(3)*3<2x*3 \\ =x+5<6x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/khaml8obvzkrr97nlw2xsc6zcaceufe1nk.png)
Combine the like terms
![\begin{gathered} x+5<6x \\ x-6x<-5 \\ -5x<-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qhihr58u4a0p0uyhk0pqgu3l09n58goreu.png)
Divide both sides by -5. Note the < will change to >
![\begin{gathered} (-5x)/(-5)>(-5)/(-5) \\ x>1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1oosamsvjtleanir4b2iy1y2aq0wlc0zf5.png)
This implies the values of x must be greater than 1, i.e. in terms of whole number, x = 2, x = 3, x = 4, ......... could be any of the solutions.
Hence,
![x=3\text{ is a solution to the inequality}](https://img.qammunity.org/2023/formulas/mathematics/college/347uw6ipcd22razqva05er9bspusms38s0.png)