Given that
![\sin \theta=\frac{\sqrt[]{11}}{6}](https://img.qammunity.org/2023/formulas/mathematics/college/s263wmxc4hhcsn3qtdjxy5rnx8pjb5xyea.png)
Required: Value of csc θ
Solution:
Step 1:
From the reciprocal trigonometric identities,

where
![\sin \theta=\frac{\sqrt[]{11}}{6}](https://img.qammunity.org/2023/formulas/mathematics/college/s263wmxc4hhcsn3qtdjxy5rnx8pjb5xyea.png)
Step 2:
Substitute the value of sin θ into equation 1.
Thus,
![\begin{gathered} \csc \theta=(1)/(\sin\theta) \\ \csc \theta=\frac{1}{\frac{\sqrt[]{11}}{6}}=\frac{6}{\sqrt[]{11}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o4epu8wvzubvf94vq8ms62s37yvdeapnwv.png)
Step 3:
Rationalize the surd obtained in step 2.
Thus, we have
![\begin{gathered} \csc \theta=\frac{6}{\sqrt[]{11}} \\ \text{Multiply the numerator and denominator by }\sqrt[]{11.} \\ \text{thus,} \\ \Rightarrow\frac{6}{\sqrt[]{11}}*\frac{\sqrt[]{11}}{\sqrt[]{11}} \\ =\frac{6\sqrt[]{11}}{11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ksjwzmtajcbj4956t9xmeegaa6oi32t4nm.png)
Hence, the value of csc θ is evaluated to be
![\frac{6\sqrt[]{11}}{11}](https://img.qammunity.org/2023/formulas/mathematics/college/yxs1za689wv1ncnjyw38nzj4u7pqjxzwvq.png)