The given point is P(-2, 6).
The rule for a 90 degrees clockwise rotation is

So, using the rotation rule P' is (6, 2).
The rule for a reflection across the x-axis is

So, using this reflection rule, P'' is (6, -2).
Hence, the final point is P''(6, -2).
Then, we find the length PP''.
![\begin{gathered} d=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)} \\ d=\sqrt[]{(-2-6)^2+(6-(-2))^2} \\ d=\sqrt[]{(-8)^2+(8)^2}=\sqrt[]{64+64} \\ d=\sqrt[]{128} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9umgpnhmneuvsq33gpe8hfc9clzk5u5qbh.png)
Hence, the answer is 2).