For this problem, we need to simplify a certain expression using only positive exponents.
The expression is given below:
![(16x^(-32)y^(-12))^{(5)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/fl948gciitw2znjcqjf9t4mpl1s5twce49.png)
The first step is to multiply the exponent that is outside of the parenthesis with the ones inside the parenthesis.
![\begin{gathered} 16^{(5)/(4)}x^{(-32\cdot5)/(4)}y^{(-12\cdot5)/(4)}\\ \\ 16^{(5)/(4)}x^(-40)y^(-15) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z8rulynrwlzzvmiclznkhi91zh7rltrkuo.png)
Now we need to invert the two bases, to make the exponents positive:
![\begin{gathered} \frac{16^{(5)/(4)}}{x^(40)y^(15)}\\ \\ \frac{\sqrt[4]{16^5}}{x^(40)y^(15)}\\ \\ (32)/(x^(40)y^(15)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6q11kyxjhdz67yolsnia7hy49itw8jf5i4.png)