Given:
Diameter, D = 10.0 m
Distance, x = 7.38 x 10¹⁰ m
Wavelength, λ = 633 nm
Let's find how far apart the closest objects it could possibly resolve.
First, apply the formula for the angle for angle separation (limit of resolution):
![\theta=(1.22\lambda)/(D)](https://img.qammunity.org/2023/formulas/physics/college/65osn1i59lbk22usljcsb6x2sib2vqvff4.png)
Thus, we have:
![\begin{gathered} \theta=(1.22*633*10^(-9))/(10.0) \\ \\ \theta=\frac{7.7226\operatorname{*}10^(-7)}{10.0} \\ \\ \theta=7.7226\operatorname{*}10^(-8)\text{ rad} \end{gathered}]()
Now, to find the distance of the closest objects, we have:
![d=\theta *x](https://img.qammunity.org/2023/formulas/physics/high-school/ic5mg6gxcqk4b3mk42kwhlcfxuh16lop8x.png)
Thus, we have:
![\begin{gathered} d=7.7226*10^(-8)*7.38*10^(10) \\ \\ d=5699.28\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/96g6w9p92r6cnhv8h3zgt568gzidkkchbm.png)
Therefore, the distance of the closest objects is 5699.28 meters.
• ANSWER:
5699.28 m