Step-by-step explanation
Step 1
Domain:
The domain of a function is the complete set of possible values of the independent variable,
so, we need to check the values that make the function undefined
![R\lparen x)=(x)/(x^2-100)](https://img.qammunity.org/2023/formulas/mathematics/college/ghqh3aycsym9t3epsriy3s3gy8w2hm1r61.png)
this function is undefined when the denominator equals zero, so
![\begin{gathered} x^2-100=0 \\ x^2=100 \\ x=\pm10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knzaie0fm8zo689x37hvf0zvy5c91vdr09.png)
therefore, the domain is all real numbers excep 10 and -10, in set notation it is
![\begin{gathered} \lbrace x\left|x\\e10\text{ and x}\\e-10\rbrace\right? \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j4fdhlzuplgujr6rdszga259k7gt93r4ci.png)
so, the answer is B
![B)\lbrace x\lvert\rvert x10\text{andx}-10\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/vwyxo8fzh4ibo9xhpsyr5uzi1xtcfzo460.png)
Step 2
(b) vertical asymptote
Vertical asymptotes are vertical lines which correspond to the zeroes of the denominator of a rational function.
so, the vertical asymptetes are
![\begin{gathered} x=-10 \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ploqvaym1tz65poniolxpn2r024poaokd9.png)
so, the answer is
![x=-10,10](https://img.qammunity.org/2023/formulas/mathematics/college/qczcacyitzo26831zt4ah3pqww801iz5le.png)
Step 3
c) horizontal asymptote
A horizontal asymptote is a y-value on a graph which a function approaches but does not actually reach.
to check the H.A.
we can use the expression
![R\left(x\right)=(p\left(x\right))/(q\left(x\right))](https://img.qammunity.org/2023/formulas/mathematics/college/20ie8s055vka6lqfriyta3e0x6wj55usmi.png)
![y=\frac{Leading\text{ coefficient of P\lparen x})}{Leading\text{ coefficient of Q\lparen x})}](https://img.qammunity.org/2023/formulas/mathematics/college/c2p2u1qfehxs52onr67rjd8t6txnxqfw5t.png)
![\begin{gathered} if\text{ degree of P\lparen x})\text{ is}<\text{ degree of q\lparen x}) \\ the\text{ asymptote is y}=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/crexjsdzyjbfxgrfkknt01t71o0zjire3j.png)
so, the horizontal asymptote is
![y=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/5vm2i52uqdka0dixzzefmp92421iv5xkk7.png)
Step 4
therefore, the answer is B
I hope this helps you