210k views
2 votes
1)Find the dimensions of the box with the minimum total surface area. 2)Find the minimum total surface area of the box.

1)Find the dimensions of the box with the minimum total surface area. 2)Find the minimum-example-1
User Spiderix
by
5.7k points

1 Answer

7 votes

Let l, x, and h be the length, width, and height of the cuboid.

Therefore, its surface is given by the formula,


A_{\text{surface}}=lx+2(hl)+2(hx)

(Notice that the box does not have a lid.)

Furthermore,


\begin{gathered} l=4x \\ \text{and} \\ V=\text{lxh} \\ V=400 \\ \Rightarrow\text{lxh}=400 \end{gathered}

1) Notice that we have two conditions,


\begin{gathered} l=4x, \\ \text{lxh}=400 \end{gathered}

Therefore,


\begin{gathered} \Rightarrow h=(400)/(lx) \\ \text{and} \\ l=4x \\ \Rightarrow h=(400)/(4x\cdot x)=(100)/(x^2) \\ \Rightarrow h=(100)/(x^2) \end{gathered}

Therefore, the surface area as a function of the width is


\begin{gathered} \Rightarrow A_{\text{surface}}=4x\cdot x+2(4x\cdot(100)/(x^2))+2(x\cdot(100)/(x^2)) \\ \Rightarrow A_{\text{surface}}=4x^2+(800)/(x)+(200)/(x) \\ \Rightarrow A_{\text{surface}}=4x^2+(1000)/(x) \end{gathered}

We need to find the minimum of the function above; first, derivate A_surface and solve A'(x)=0, as shown below


A^(\prime)_{\text{surface}}(x)=8x+1000(-(1)/(x^2))=8x-(1000)/(x^2)

Then,


\begin{gathered} A^(\prime)_{\text{surface}}(x)=0 \\ \Rightarrow8x-(1000)/(x^2)=0 \\ \Rightarrow8x^3-1000=0 \\ \Rightarrow x^3=(1000)/(8) \\ \Rightarrow x=\sqrt[3]{(1000)/(8)}=(10)/(2)=5 \\ \Rightarrow x=5 \end{gathered}

Therefore, the width that minimizes the total surface area is x=5cm.

Finding l and h,


\begin{gathered} \Rightarrow l=4\cdot5=20 \\ \text{and} \\ h=(100)/(25)=4 \\ \Rightarrow h=4 \end{gathered}

The answers to part a) are l=20cm, x=5cm, h=4cm.

b)

Finally, set l=20, x=5, and h=4cm in the A_surface function, as shown below,


\begin{gathered} A_{\text{surface}}=20\cdot5+2(20\cdot4)+2(5\cdot4)=300 \\ \Rightarrow A_{\text{surface}}=300 \end{gathered}

The minimum total surface area is 300cm^2

User Johann Hibschman
by
5.4k points