Step 1: Let's find the circumference of the tire in feet.
Given:
Recall: 1 foot = 12 inches
Radius = 13 inches = 13 ÷ 12 = 13/12 Feet
We get,
![\text{ Circumference = 2}\pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/d2b2uez9zhy9xqt7yx4sczdvy4r8hthha2.png)
![\text{ = 2}\pi((13)/(12))](https://img.qammunity.org/2023/formulas/mathematics/college/z1g790z9kacws820923oy5cng0f4bw9bfg.png)
![\text{ Circumference = }(26)/(12)\pi\text{ = }(13)/(6)_{}\pi\text{ feet}](https://img.qammunity.org/2023/formulas/mathematics/college/nw1wbvcs00297o96ux44z3ct23xi7vy5m5.png)
Step 2: Let's now determine the number of revolutions that tire will have in 1 mile.
![\text{ Total number of revolutions = }\frac{\text{ 1 mile}}{\text{ Circumference of the tire}}](https://img.qammunity.org/2023/formulas/mathematics/college/b5afywdajutqwnewk7zxhl9ihfv9whz6xq.png)
Recall: 1 mile = 5280 feet
We get,
![\text{ Total number of revolutions = }\frac{\text{ 5}280}{(13\pi)/(6)_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/d1eeutqrb8p1ca8ij7u4rf7m8thhqlar2t.png)
![\text{ = 5280 x }\frac{\text{ 6}}{13\pi}](https://img.qammunity.org/2023/formulas/mathematics/college/zyng4imi45h5lgxspsakeomisf2chfq6k0.png)
![\text{ = }\frac{\text{ 3}1680}{13\pi}](https://img.qammunity.org/2023/formulas/mathematics/college/hoac6ncawsslctr24llw1vs8fq76yb8yus.png)
![\text{= }\frac{\text{ 3}1680}{13\pi}\text{ = }(31680)/(13(3.1416))\text{ = 775.69489334195}](https://img.qammunity.org/2023/formulas/mathematics/college/65t6ndzxlq3e69cyfbvzf2mbrl0shlzunh.png)
![\text{ Total number of revolutions }\approx775.69\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/373kblgtbsbmvwmm4jeon17j53bpvuuryg.png)
Therefore, the answer is 775.69 revolutions.