191k views
5 votes
The following steps were used to prove 1. Factor.II. Simplify.III. Use a Pythagorean identity.IV. Use a quotient identity.V. Use a reciprocal identity.In which order were the steps performed?

The following steps were used to prove 1. Factor.II. Simplify.III. Use a Pythagorean-example-1

1 Answer

7 votes

Solution

Step 1

Write the trigonometric equation


tan^2\theta\text{ - sin}^2\theta\text{ = sin}^4\theta sec^2\theta

Step 2

Apply the quotient identity


(sin^2\theta)/(cos^2\theta)\text{ - sin}^2\theta

Step 3

Factor out the common factor


sin^2\theta((1)/(cos^2\theta)-\text{ 1\rparen}

Step 4

simplify


sin^2\theta((1-cos^2\theta)/(cos^2\theta))

Step 5

Reciprocal identity


sin^2\theta(1\text{ - cos}^2\theta)sec^2\theta

Step 6

Use the Pythagorean identity


\begin{gathered} sin^2\theta\text{ + cos}^2\theta\text{ = 1} \\ sin^2\theta\text{ = 1 - cos}^2\theta \\ Hence \\ sin^2\theta(1\text{ - cos}^2\theta)sec^2\theta \\ sin^2\theta\text{ }*\text{ sin}^2\theta\text{ }*\text{ sec}^2\theta \end{gathered}

Step 7

Simplify


sin^4\theta sec^2\theta

Final answer

Option D

IV , I , II , V , III , IV , II

User John Pickup
by
6.3k points