Given the first three terms of a geometric sequence:
![\text{ 4, 20, 100}\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/6n0na6gpcyyvuzhxtukhi25erp28uba0x6.png)
To be able to determine the next 2 terms, let's first find out their common ratio r.
![\begin{gathered} \text{ }(20)/(4)\text{ = 5} \\ \\ (100)/(20)\text{ = 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/glphvt1kc4burmb2tv673z1l6f4c5l2o6x.png)
Therefore, the common ratio r is 5.
Let's find the next 2 terms:
a.) The 4th term.
![\text{ A}_4=A_1(r)^{n\text{ - 1}}=(4)(5)^{4\text{ - 1}}=(4)(5)^3](https://img.qammunity.org/2023/formulas/mathematics/college/hrrui7kmjmlzoaqq9zf2j09e3ninv2f04v.png)
![\text{ = (4)(125)}](https://img.qammunity.org/2023/formulas/mathematics/college/4jyhf9mt25qknbiy8dqdxaz5aa9w032gga.png)
![\text{ A}_4\text{ = 500}](https://img.qammunity.org/2023/formulas/mathematics/college/flyyc957ptkrudvdr35lou9g0y0k1trxv5.png)
b.) The 5th term.
![\text{ A}_4=A_1(r)^{n\text{ - 1}}=(4)(5)^{5\text{ - 1}}=(4)(5)^4](https://img.qammunity.org/2023/formulas/mathematics/college/f86ryd8ybz85hzuu46m498hrxuv1j155hq.png)
![\text{ = 4(625)}](https://img.qammunity.org/2023/formulas/mathematics/college/2jl47rgqtuipys83yf3nuxfukrwkv2wmry.png)
![\text{ A}_5\text{ = 2,500}](https://img.qammunity.org/2023/formulas/mathematics/college/5p24clwv3o3c9wfgnypzrb8ibastt8miqo.png)
Therefore, the next 2 terms (4th and 5th) of the geometric sequence are 500 and 2,500 respectively.